Your first benchmark
Benchmark your own model with embedl-hub
This interactive guide helps you benchmark your first model using the Embedl Hub Python library. Click the blue, underlined text in each codeblock, and replace it with relevant values. Then, copy and paste the content of the codeblocks into a terminal and run the commands.
Prerequisites
If you haven’t already done so, follow the instructions in the setup guide to configure the Embedl Hub Python library.
Create a project and experiment
embedl-hub init \
--project "My first project" \
--experiment "baseline"Compile your model from ONNX to TFLite
embedl-hub compile \
--model /path/to/model.onnx(Optional) Quantize the model
embedl-hub quantize \
--model /path/to/model.tflite \
--data /path/to/dataset \
--num-samples 100Benchmark the model on remote hardware
embedl-hub benchmark \
--model /path/to/model.quantized.tflite \
--device "Samsung Galaxy S24"